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Tübingen, Germany
‡ Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1,
Canada

Received 18 February 1998

Abstract. After a brief historical survey, this paper introduces the notion of entropic model
sets (cut and project sets), and, more generally, the notion of diffractive point sets with entropy.
Such sets may be thought of as generalizations of lattice gases. We show that taking the site
occupation of a model set stochastically results, with probabilistic certainty, in well-defined
diffractive properties augmented by a constant diffuse background. We discuss both the case
of independent, but identically distributed (i.i.d.) random variables and that of independent, but
different (i.e. site dependent) random variables. Several examples are shown.

1. Introduction

Diffraction is one of the most important ways of identifying long-range order in mathematical
and physical structures. In this paper, we look at the effects on diffraction that occur in
certain periodic and quasiperiodic point sets when the occupation of the point sites is taken
stochastically rather than deterministically, with independence between the different sites.
Under fairly mild assumptions, which are certainly valid for lattices and model sets, we show
that the effect is simply one of scaling down the diffraction pattern by a constant factor and
adding in a constant background. In the case of lattices, this type of phenomenon is well
known [9, 39]. What is new here is that it remains true for a large class of non-periodic
structures (theorems 1 and 2) and, in particular, for all regular model sets (also called
cut-and-project sets).

The results are, on the one hand, a suitable reminder of the difficulty of interpreting
the meaning of diffractivity, and, on the other hand, of the robustness of diffractivity under
certain deformations and modifications of the underlying set.

It might be interesting to quickly review the history of aperiodic order and take a look
at the reasons why stochastic forms of aperiodic structures seem to be a natural extension
beyond the world of strict perfection. In the early 1980s, a new type of ordered state was
found, both experimentally [31, 14] and theoretically [18, 19]. These discoveries, made
independently of one another, created an enormous amount of scientific activity because
the new ordered states, quickly dubbed quasicrystals, had properties previously thought to
be incompatible with one another; namely, long-range orientational order, strong enough
to produce sharp diffraction images, and at the same time non-crystallographic symmetries
such as icosahedral [31, 19] or twelvefold symmetry [14].

∗ Dedicated to Hans-Ude Nissen on the occasion of his 65th birthday.
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Since nothing has ever been discovered for the first time, one might expect precursors
of this, and this is indeed correct. Clearly, Penrose’s famous tiling of the plane with fivefold
symmetry was important, particularly when coupled with de Bruijn’s algebraic analysis that
showed that it was also diffractive†. Ammann investigated this further and also found the
matching icosahedral tiling made from two rhombohedra. However, this was not generally
known in the physics community (a brief remark can be found in [23]), and has never been
published by him. Even his planar results were published only much later [1], though some
results are contained in [10].

In fact, the history goes back quite a bit before this. In the late 1930s of this century,
Kowalewski [17] investigated the possibilities of filling Kepler’s triacontahedron with the
two rhombohedra mentioned above, but apparently did not realize the possibility of filling
the entire space with them.

Kepler himself was very much interested in space fillings in his time, and his famous
plate of planar tilings (resp. seeds of them) shows a considerable patch of a tiling with
pentagons, decagons and rhombi, see the first plate in [10]. In modern terminology [7], this
would be in the same MLD class as the famous Penrose tiling, in the sense that there is
a derivation rule with a radius much smaller than the patch shown such that, on the size
displayed, there is no way to tell the two tilings apart. This is probably not an accident
because Kepler was well aware of the problems of space fillings, as were other people
before him, such as D̈urer who constructed a mechanism to create a fivefold twin made
from pentagons and rhombi. Generally, the investigation of geometric form was well on the
way. Dürer’s polyhedron in his ‘melancholia’ has puzzled generations of scientists and art
historians—with a really promising solution being found only very recently by Hans-Ude
Nissen [26].

The development of the theory of incommensurate structures by the Nijmegen group
and the new developments in the theory of quasicrystals showed that there is a lot more
to the geometry and symmetry of the solid state than anticipated by ordinary school
knowledge. Probably the most puzzling aspect in the beginning was the combination of
perfect diffractivity (in the sense of a Bragg spectrum) with non-crystallographic symmetry.
But again, the final explanation, in terms of the projection method [19], had a precursor,
this time in pure mathematics.

Harald Bohr, the younger brother of Niels, developed the theory of quasi- and almost
periodic functions in the 1920s. The basic idea was to describe non- but quasi-periodic
functions as sections through periodic functions in higher dimensions. In this sense, the
cut-and-project method owes a lot to his ideas. In the late 1960s, Yves Meyer studied
the harmonic analysis of point sets in the context of algebraic numbers. In the process he
rediscovered cut-and-project sets (here calledmodel sets), though now in the much wider
setting of locally compact Abelian groups, and introduced a very important class of ordered
point sets, now called Meyer sets [24] (see later for one characterization of Meyer sets).

After this historically motivated introduction, let us come to the aim of this article.
Although all the above mentioned connections might indicate that the (quasi-) crystalline
world is perfect, in the sense that the alloys displaying such diffraction images are, reality
tells us nowadays that this is not so [27, 16]. In fact, quite early on it was pointed out
by Elser that, in order to explain the stability of such alloys, one might need anentropic
side of the picture, an idea that led the Cornell group to develop the idea of a random
tiling. From a more mathematical point of view, this is not fully satisfactory because quite
a number of questions concerning the diffractivity, and even the well-definedness of some

† If not explicitly specified, the proper references are obvious by the names given, and can be found in [38].
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of the ensembles, are still unanswered.
This is the point we want to consider and start to develop. However, we will not adopt

the random tiling picture here, because it seems not yet fully in reach for a rigorous treatment
(cf [29] and references therein for some recent developments). Instead, as an intermediate
step, we shall rather consider a set-up of idealmodel sets, or even more general diffractive
point sets, that are coupled to stochastic processes to thin them out. This way, we can
introduce some randomness into the picture, even with positive entropy density, without
losing control of the diffractivity. This can be seen as a generalization of the diffraction
theory of lattice gases which belongs to the standard body of literature, see [11, 9, 39] and
references therein.

In doing so, we will actually arrive at results that exactly meet the expectation, but with
the extra benefit of providing proofs for them, i.e. making a good deal of folklore rigorous in
this way. It will turn out that there is anatural extension of the diffraction theory of lattices
gases beyond lattices,provided one uses an approach that avoids techniques based upon
translation invariance. Although the actual methods and results employed from probability
theory and ergodic theory are pretty standard in mathematics, they are much less familiar
to physicists.

Let us now briefly sketch how this paper is organized. We start with a section on the
diffraction of lattice gases (without interaction) and its connection to entropy density. This
gives us the opportunity to review some well known results in a different setting that matches
the generalizations derived later. We hope that the reader can adjust to our approach that
way without too much pain. This is followed by our general set-up, where we introduce a
rather general type of point sets which are accessible with our methods. Common examples
such as model sets (or cut-and-project sets) are contained as special cases.

The remainder of the article is then devoted to the diffraction of point sets with
independent stochastic occupation of sites. First, the focus is on the situation of independent,
but identically distributed (i.i.d.) random variables, the case most frequently studied.
Theorem 1 gives the result for this case. This is illustrated by some examples, and model
sets in particular.

More general, and less obvious, is the treatment of independent, but not necessarily
identically distributed, random variables, which leads to theorem 2. Among the applications
are weighted model sets and their stochastic counterpart, and, more specifically, weighted
model sets where the weights are determined by a so-called invariant density [2, 3]. This
way, we are able to keep certain aspects of point and inflation symmetries. We believe that
this application is of particular value in the discussion of perfect versus random tiling order,
as it really is a first step of an intermediate picture.

Our concluding remarks try to relate the results to other investigations and to point
towards the next steps that should be taken.

2. Diffraction from a lattice gas

In order to keep things simple, and to familiarize the reader with our approach, we start
with the description of the lattice situation and give proper definitions for the general set-up
later. Let0 be a lattice inRn, i.e. a discrete Abelian subgroup ofRn such thatRn/0 is
compact [35]. Equivalently, there aren linearly independent vectorsb1, . . . , bn, called the
basis vectors of0, so that0 = Zb1 ⊕ · · · ⊕ Zbn. Since we will be talking about Fourier
transforms, we will also need the dual (or reciprocal) lattice of0, defined by

0◦ := {x ∈ Rn|x · y ∈ Z for all y ∈ 0} (1)
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wherex · y denotes the Euclidean scalar product.
Next, defineDirac’s combas the characteristic distribution

ω = ω0 :=
∑
x∈0

δx (2)

on 0, whereδx is Dirac’s distribution at pointx, i.e.

(δx, φ) := φ(x) (3)

for all test functionsφ. In particular, one gets

(ω, φ) =
∑
x∈0

φ(x) (4)

which is well defined for all rapidly decreasing functions (Schwartz functions), henceω0
is a tempered distribution [28].

To deal with diffraction, we need the corresponding autocorrelation distribution,γω, of
0, also called its Patterson function (although it is a distribution†). With the abbreviation

0r := 0 ∩ Br(0) = {x ∈ 0||x| 6 r} (5)

γω can be defined and calculated as follows

γω := lim
r→∞

1

vol(Br(0))

∑
x,y∈0r

δx−y = d · ω (6)

whered is the density of0, i.e. the number of lattice points per unit volume.
By the Fourier transform of a Schwartz functionφ we mean

φ̂(k) :=
∫
Rn

e−2π ik·xφ(x) dx (7)

which is again a Schwartz function [28]. The inverse operation is given by

ψ̌(x) =
∫
Rn

e2π ix·kψ(k) dk. (8)

This definition results in the usual properties, such asˇ̂φ = φ and ˆ̌ψ = ψ . The convolution
theorem takes the form̂φ1 ∗ φ2 = φ̂1 · φ̂2 where convolution is defined by

φ1 ∗ φ2(x) =
∫
Rn
φ1(x − y)φ2(y) dy. (9)

Finally, the matching definition of the Fourier transform of a distributionT is

(T̂ , φ) := (T , φ̂) (10)

for all Schwartz functionsφ, as usual.
Now, the diffraction by the lattice0 is described by the Fourier transform of its

autocorrelation [9], and in this case we haveγ̂0 = d · ω̂0. To calculate the latter, we
employ Poisson’s summation formula for tempered distributions, cf p 254 of [30], which
reads ∑̂

x∈0
δx = d ·

∑
k∈0◦

δk (11)

† It would actually be slightly more appropriate to adopt the set-up of measure theory, whereγω would represent
a tempered measure, see [12] for this complementary approach.
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and can easily be proved from the corresponding Poisson summation formula for Schwartz
functions. So we get

γ̂ω = d2 ·
∑
k∈0◦

δk (12)

which is the well known result that the diffraction from point scatterers of equal strength
on the points of a lattice is a pure point measure, consisting of periodically placed point
measures on the dual lattice. Note that the strength of the peak atk = 0 is d2, the square
of the density of0, as it must be.

Let us now move on to the corresponding lattice gas, i.e. to the point set obtained from
0 by removing points from it stochastically. To describe this, we define a new measureωs
(with suffix s for stochastic) by

ωs =
∑
x∈0

η(x)δx (13)

whereη(x) is a random variable at sitex which takes only the values 0 and 1, meaning
empty or occupied. We assume that these random variables are independent of one another
and identically distributed, i.e. they constitute a (countable) family of i.i.d. random variables
[8, 36]. In fact, we parametrize the probabilityP that η(x) takes the value 1 by a number
06 p 6 1, i.e.

P({η(x) = 1}) = p P ({η(x) = 0}) = 1− p. (14)

With this definition,ωs of (13) describes scatterers on the sites of a lattice, each single
site being occupied with the same independent probabilityp. Clearly, the mean value of
each random variable ism1 = p, the second moment ism2 = p and the variance is thus
v = m2− (m1)

2 = p(1− p).
Referring now to the strong law of large numbers [8, 36], we can deduce (details will

be given below in a more general context) that, almost surely,

lim
r→∞

1

vol(Br(0))

∑
x∈0r

η(x)η(x − y) = d · p(p + (1− p)δy,0) (15)

i.e. the limit exists and equals the right-hand side with probability one. Here,δa,b denotes
Kronecker’s delta. With this expression, one can calculate the new autocorrelation to be,
with probability one,

γωs = p2 · γω + d · p(1− p) · δ0. (16)

Fourier’s transformation then gives

γ̂ωs = p2 · γ̂ω + d · p(1− p) (17)

i.e. we retrieve the point part of the full lattice case, reduced by a factor ofp2 as it should
according to the reduced density of points, plus a constant diffuse background which is the
absolutely continuous part of the diffraction. This term is related to the entropy density
s = s(p),

s(p) = −p log(p)− (1− p) log(1− p) (18)

which is a measure of the complexity of the ensemble of point sets we are actually
dealing with in this example. The presence of entropy is usually connected to continuous
components in the diffraction spectrum, and one can clearly see thats(p) vanishes if, and
only if, p = 0 or p = 1, i.e. iff the random variables are sharp. Also,s(p) is maximal at
p = 1

2, which corresponds to the value ofp where the diffraction (17) shows the largest
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amount of white noise. Finally, in this case, we have an essentially unique relationship
between the entropy and the background intensity, up to the symmetryp↔ (1− p).

Note that the continuous part vanishes if and only if the variance of our random variable
vanishes, i.e. if and only ifp = 0 or p = 1. Also, the pure point part vanishes if and only
if the mean of the random variable vanishes, i.e. if and only ifp = 0. We shall meet this
situation again later in a much more general context.

3. General set-up

The previous section should have served to get a feeling of what we are after, and to
introduce the type of notation we wish to apply. Let us now develop the theory with more
precision and in more generality. In what follows, we will only consider uniformly discrete
point sets3 ⊂ Rn, i.e. point sets with the property that there is a positive radiusε such that
each pointx ∈ 3 can be surrounded by an open ball of radiusε that does not contain any
point from3 other thanx. With this assumption, the corresponding Dirac combω3 defines
a translationally bounded distribution (i.e. for each compact setK, there is a constantcK so
that for all x ∈ Rn, (ω3, χK+x) 6 cK , whereχS denotes the characteristic function of a set
S). This is sufficient, though certainly not necessary, to makeω3 a tempered distribution.
As before, we write3r for the intersection3 ∩ Br(0). Now, we have to tie this together
with Fourier analysis.

Definition 1. Let 3 be a uniformly discrete point set of (existing) natural densityd > 0,
and letω = ω3 =

∑
x∈3 δx be its Dirac comb. We say that3 has a naturalautocorrelation

if

γω := lim
r→∞

1

vol(Br(0))

∑
x,y∈3r

δx−y (19)

exists as a limit in the weak topology (i.e. as a limit of tempered distributions), and thus
is a tempered distribution. Then,γω is called anautocorrelation distributionor simply an
autocorrelationof 3.

Note that, if this situation applies, thenγω is translation bounded (γω inherits this property
from ω) and is a distribution of positive type, compare [12]. Let us briefly comment on the
more general set-up in terms of measures. If we only had existence of an autocorrelation
as a measure in the vague topology, translation boundedness would guarantee that it is
actually tempered—so, in our context of uniformly discrete sets, the restriction to tempered
distributions is reasonable.

Note that existence of an autocorrelation, as we have defined it here, is specific to the
type of region (in this case balls, as implied above by the attribute ‘natural’) over which
we compute our averages. Replacing balls by other (convex) objects, centred at 0, the limit
r →∞ (with r the radius of inscribed balls, say) might give a different answer or might not
even exist. For the purposes of this article we do not need to deal with limiting processes
over more than one type of shape at the same time, so we will phrase the arguments in
terms of convergence based on sequences of balls. The arguments for sequences based on
other shapes work in the same way. However, for other purposes it is important to specify
uniquenessof the autocorrelation. For example, this can be done as follows:

Let (Cn)n∈N be a family of convex bodies, centered at 0, with the properties that, as
n→∞, the radius of the maximal inscribed balls tends to∞ and the quotient of the radii
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of circum- and inscribed balls is bounded. If

γω := lim
n→∞

1

vol(Cn)

∑
x,y∈3∩Cn

δx−y (20)

exists for each such sequence as a tempered distribution and is unique, we say that3 has
a unique autocorrelation, γω.

In any case, a point set with a natural autocorrelation has a positive measureγ̂ω as
its Fourier transform (due to the Bochner–Schwartz theorem [28]). It is this measure that
desribes the diffraction [9, 12], and it is very natural that a positive measure shows up
here: after all, diffraction is all about the amount of intensity scattered into a certain
(measurable) reagion of space. Also, this positive measure can now, according to Lebesgue’s
decomposition theorem, uniquely be decomposed into an absolutely continuous part, a
singular continuous part, and a pure point part. The pure point part (usually called ‘Bragg
part’ in physics) will always contain a trivial term of the formd2 · δ0 whered is the (by
assumption existing) density of3 per unit volume. This motivates the following.

Definition 2. A point set3 with autocorrelationγω is called diffractive (with respect to
the convergence process adopted) if(γ̂ω)pp is non-trivial, i.e. contains Dirac distributions
different fromd2 · δ0. 3 is calledperfectly diffractiveor pure pointif γ̂ω has no continuous
part at all.

The simplest example of a perfectly diffractive point set is a lattice, where the statement
follows from Poisson’s summation formula. Another class of examples is given by regular
model sets with sufficiently nice windows (see the last section for more on this) or
by extensions of them to certain limit-periodic or limit-quasiperiodic point sets usually
described by means of inflation [37, 6]. All these examples are not only uniformly discrete,
but also relatively dense, so they are Delone sets. What is more, they are actually Meyer
sets, i.e. not only are they Delone but they have the additional property that their difference
set,3 − 3, is also Delone. Note, however, that the Delone property is not necessary for
perfectly diffractive sets, as can be seen from the example of the set of visible points of a
lattice [5] which has holes of arbitrary size (and this even with positive density) and is thus
neither Delone nor a density 0 deviation of one. Note that removing or adding points of
density zero from a perfectly diffractive set does not change its autocorrelation, and the set
thus stays perfectly diffractive.

On the other hand, Meyer sets need not be perfectly diffractive, as can be seen from the
union of 2Z with various subsets of 2Z+ 1. This is always a Meyer set, but one can easily
construct cases with continuous components (and positve entropy density). This indicates
that the class of Meyer sets, or even Delone sets, and the class of perfectly diffractive sets
are rather different, though they have some sets in common. In general, perfectly diffractive
sets will not be Delone, and hence not Meyer. One interesting class of point sets in this
context is that of uniformly discrete setsS with the extra property thatS − S is Delone, or
at least thatS − S is closed and discrete. They are the ones we shall consider here.

4. Point sets with independent stochastic occupation of sites

In this section, we will develop an appropriate generalization of the lattice gas (with i.i.d.
random variables) to much more general point sets. From now on, let3 be a uniformly
discrete point set which has anatural autocorrelation. Let us also assume that3 is of finite
local complexity, i.e. that1 := 3 − 3 is discrete and closed, compare [21] for a detailed
discussion in the context of Delone sets. Finite local complexity of a set3 implies that, for
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every radiusr > 0, there are, up to translations, only finitely many different configurations
of points in a ball of radiusr. In particular,3 is uniformly discrete. This is so because1
discrete forces 0∈ 1 to be isolated, so different points in3 must have a uniform minimal
distance from one another.

If ω =∑x∈3 δx is the Dirac comb of3, as usual, it is now certainly translation bounded,
and the autocorrelation is given by equation (19). We then have

γω =
∑
z∈1

ν(z)δz (21)

whereν(z) is theautocorrelation coefficientat z, defined by

ν(z) = lim
r→∞

1

Vr

∑
x,y∈3r
x−y=z

1. (22)

Here,3r := 3 ∩ Br(0) as before, and Vr := vol(Br(0)). Note that, in order to establish
the existence of an autocorrelation, it is sufficient to show the existence of the limits in
(22), i.e. the existence of the coefficients, because1 discrete then implies existence of the
autocorrelation as a measure in the vague topology, and translation boundedness ensures
temperedness, see [12] for further details.

Let us now turn to a stochastic ‘lattice gas’ version of3. It is defined by the
characteristic distribution

ωs =
∑
x∈3

η(x)δx (23)

whereη(x) is a family of i.i.d. random variables taking the values 0 and 1, parameterized
as in equation (14), each with meanp and variancev = p(1− p).

We first address the question of the existence of the corresponding stochastic
autocorrelation. In analogy to equation (22), we now have the coefficients

νs(z) := lim
r→∞

1

Vr

∑
x,y∈3r
x−y=z

η(x)η(y) = lim
r→∞

1

Vr

∑
x,x−z∈3r

η(x)η(x − z). (24)

We will show that under mild assumptions these coefficients exist, at least in a
probabilistic sense. In order to do this, we need to be able to decompose the sum involved in
νs(z) into two parts, because the various terms in the sum of (24) are still random variables,
but not necessarily independent ones any more. Fixz ∈ Rn. Define

S(z) := {x|x, x − z ∈ 3} (25)

and its restricted versionS(z, r), where thex, x− z appearing in the definition are required
to lie in 3r . We distribute the points ofS(z) (and, by proper restriction, also those of
S(z, r)) into two setsS(z)(0) andS(z)(1). This may be done in an arbitrary fashion, subject
only to the two conditions that:

(1) if x, x − z both lie in S(z), then they arenot in the sameS(z)(i), and
(2) the two setsS(z)(i) have well-defined densities:

ν(i)(z) := lim
r→∞

1

Vr

∑
x∈S(z,r)(i)

1. (26)

Evidently, (26) impliesν(z) = ν(0)(z)+ ν(1)(z). Let us say that the set3 can bedecoupled
if, for every z ∈ 1, we can find such a partition.

We note that there may be many ways of decoupling a set3. For lattices, for example,
we can take each line of pointsx + Zz and distribute it into the two subsets according to
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whether the coefficient ofz is even or odd. For aperiodic model sets (see definitions below),
each of the sets{x|x + z, x − kz /∈ 3; x, x − z, . . . , x − (k− 1)z ∈ 3} is finite, of bounded
length k and, for eachk, the set of such strings has a definite density. We can place the
points x, x − z, x − 2z, . . . alternately intoS(z)(0) and S(z)(1) and again obtain sets with
well-defined density this way; see [13] for a very similar approach to thermal fluctuations
which establishes the usual form of the Debye–Waller factor for essentially the same kind
of structures that we are dealing with here.

The decoupling property is some kind of ergodicity assumption. It is certainly fulfilled
for point sets with uniform frequencies of all finite patches (as is the case for usual model
sets), but it is more general than this. In particular, it is still valid for objects such as the
pinwheel tiling, compare the brief discussion in [13]. At present, we do not know any
equivalent characterization simpler than that given above, which is very much designed for
its (technical) purpose.

Proposition 1.Let 3 be a point set of finite local complexity which has a natural
autocorrelation. Assume further that the set3 can be decoupled. Then each coefficient of
the stochastic autocorrelation (i.e. the corresponding limit) exists with probability 1, and is
given by

νs(z) = ν(z) · ((m1)
2+ (m2− (m1)

2)δz,0) (27)

wherem1(= p) is the common mean of the i.i.d. random variablesη(x) andm2 is their
common second moment.

Proof. This is an application of the strong law of large numbers. Forming a sequence of
random variables out of a family(η(x))x∈3 etc is rather canonical. Since3 is uniformly
discrete, we number theη(x) with x in finite sets3r for increasingr. Each such sequence,
by the general assumptions made, is a sequence that conforms to the strong law of large
numbers.

Let us considerz = 0 first. Here, the relevant random variable is actuallyη(x)2, with
meanm2, the second moment ofη(x). These variables are independent and, almost surely,

lim
r→∞

1

Vr

∑
x∈3r
x−z∈3

η(x)2 = d ·m2

whered = ν(0) is the (existing) natural density of3.
Next, let z 6= 0, z ∈ 1, be arbitrary, but fixed. Ifν(z) = 0, alsoνs(z) = 0, and our

assertion is trivial. So, assumeν(z) > 0, which means that the density of pointsx ∈ 3,
such that alsox− z ∈ 3, exists and is positive. For each suchx, η(x)η(x− z) is a random
variable with mean(m1)

2, wherem1 = p is the (identical) mean of all random variables
η(y) involved. We now have to consider

lim
r→∞

1

Vr

∑
x∈3r
x−z∈3r

η(x)η(x − z).

This sum has only non-negative terms and decomposes as two sums:

νs(z) = lim
r→∞

1

Vr

∑
x∈S(z,r)(0)

η(x)η(x − z)+ lim
r→∞

1

Vr

∑
x∈S(z,r)(1)

η(x)η(x − z).

Now each of the two sums is an averaged sum over a set ofindependentrandom variables.
Hence, by the strong law, we get almost sure convergence to

νs(z) = ν(0)(z)m2
1+ ν(1)(z)m2

1 = ν(z)m2
1 (28)
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because the mean of each random variableη(x)η(x− z) is m2
1. Together with the first step,

this establishes our claim. �

The autocorrelationγωs of ωs is defined as the distribution whose value on any test
functionφ is

(γωs , φ) = lim
r→∞

1

Vr

∑
x,y∈3r

η(x)η(y)φ(x − y). (29)

Although we know this already from the above abstract arguments, it might be instructive
to check explicitly thatγωs is indeed a tempered distribution, at least in the sense of almost
sure convergence. First, letφ be aC∞ function of compact support, lying in the ballBs(0)
of radiuss. Then

(γωs , φ) = lim
r→∞

∑
z∈1

1

Vr

( ∑
x,y∈3r
x−y=z

η(x)η(y)

)
φ(z). (30)

This limit exists because in reality the outer sum is over the finite set1s and for r >> s

we have1s ⊂ 3r −3r . Thus, asr →∞, the sum converges, almost surely, to∑
z∈1

νs(z)φ(z). (31)

Now if φ ∈ S, the space of Schwartz functions, and{φi} is a sequence ofC∞-functions
of compact support that converge toφ in the standard topology ofS, then∑

z∈1
νs(z)φi(z) = (m1)

2
∑
z∈1

ν(z)φi(z)+ (m2− (m1)
2)ν(0)φi(0) (32)

and the latter converges ini to

(m1)
2
∑
z∈1

ν(z)φ(z)+ (m2− (m1)
2)ν(0)φ(0) (33)

by our assumptions on the existence of the autocorrelation density of3.
Let us summarize these findings as follows.

Theorem 1.Let3 be a point set of finite local complexity which has a natural autocorrelation
and densityd. Suppose that3 can be decoupled. Then, the autocorrelation of3 and that
of its stochastic version are, with probability one, related by

γωs = (m1)
2γω + d(m2− (m1)

2)δ0. (34)

As a consequence, their Fourier transforms fulfil

γ̂ωs = (m1)
2γ̂ω + d(m2− (m1)

2). (35)

So, the stochastic version has the same ‘main’ part of the diffraction, multiplied by a
factor of (m1)

2 (hence vanishing if and only if the mean of the joint probability distribution
is 0) plus an extra absolutely continuous part that is constant and represents the ‘white noise’
of the uncorrelated random processes. The constant is essentially given by the variance of
the joint distribution, and thus this part vanishes if and only if the i.i.d. random variables
are all sharp. The interpretation, and also the connection with the entropy density, is thus
the same as in the lattice case, as expected.

At this point, generalizations are rather obvious, and we just want to mention a few.
First of all, it is by no means essential to restrict to the particular types of random variables
that we have just discussed. Here we were motivated by the idea of a lattice gas and its
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generalization to uniformly discrete point sets, but we can also think of any other (non-
negative) i.i.d. random variable with (existing) meanm1 and second momentm2 (so, the
variance would bev = m2− (m1)

2). This does not change the result, and would correspond
to a situation where we place, at each pointx of the set3, a scatterer of random strength
η(x). Again, we get the result of theorem 1.

Note also that at no point did we need to assume thatγ̂ω was pure point. This is not
necessary, and indeed, the result of theorem 1 also applies to situations whereγ̂ω is singular
continuous, absolutely continuous, or of mixed type. This same situation is met in Hof’s
treatment of thermal fluctuations [13].

5. Applications to lattices and model sets

The obvious first application is tolattices. This results in a rigorous derivation of what we
described in section 2. The diffraction from a lattice gas, with i.i.d. random variables for
the strength of the Dirac distributions at the lattice points, shows a point part that is the one
from the lattice itself, reduced in intensity, plus a homogeneous diffuse background.

Another application is to characteristic decorations on tilings† that are obtained by a
primitive substitution rule. Here, it was shown [22] that the autocorrelation is unique, and
convergence of its coefficients is even uniform. In general, the Fourier transform will not
be pure point, see [37] for a more detailed discussion. We also refer to [13] for a brief
discussion of the decoupling property in situations without finite local complexity such as
the pinwheel tilings of the plane.

Lattice gas versions ofmodel setsprovide another class of examples, of rather recent
interest. Recall that a model set [25, 33] is defined via projection ontoRn of a lattice in
some higher-dimensional space, or, more generally, in some locally compact Abelian group.
More precisely, it is assumed thatG = Rn×H is a locally compact Abelian group and that
D is a lattice inG. ThusD is a discrete subgroup ofG for which the quotient spaceG/D
is compact. Further, we assume that the projectionπ1(D) of D into Rn is injectiveand its
projectionπ2(D) into H is dense, whereπ1 andπ2 denote the canonical projections. The
resulting set is aperiodic, i.e. has no translational symmetries, if and only ifπ2 is injective
on D. The most common examples takeH = Rm for somem. In any case, define the
composite map∗ := π2 ◦ π1|−1

D : π1(D) −→ H . Then for any set� ⊂ H with non-empty
interior and compact closure, we have themodel set

3 = {x ∈ π1(D)|x∗ ∈ �}. (36)

Provided that the boundary of� has measure 0 (with respect to the Haar measureµ of
H ), the density of such a set exists uniformly and is given byµ(�)/vol(D). Here, vol(D)
is the volume of any fundamental domain forD in G, the volume taken relative to the
product measure onG derived from the Lebesgue measure onRn and the Haar measureµ
on H [32, 33]. Such a model set is a Meyer set, i.e. both3 and1 = 3−3 are Delone.
Also, 3 is perfectly diffractive [34], and the obvious lattice gas version of it, with i.i.d.
random variables attached to each position, falls under our theorem 1.

A large number of well known point sets can be interpreted in this setting, including
the Fibonacci and many other chains, the vertex sets of various planar tilings (such as
the Ammann–Beenker, the Penrose, the Tübingen triangle tiling etc) or of tilings in
higher dimensions (such as the various icosahedral examples in 3D or the Elser–Sloane
quasicrystal in 4D). But even decorations of the chair tiling and other limit-periodic and

† We call a point set of finite local complexity a characteristic decoration of a locally finite tiling if they are
locally equivalent, i.e. if both objects represent the same MLD-class, see [7] for details.
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limit-quasiperiodic structures fall under this class, see [6] for details. So, for all these cases,
we have the following.

Corollary 1. If 3 is a model set as described above, it fulfils the conditions of theorem 1,
and the diffraction of the stochastic versus the deterministic Dirac comb is, almost surely,
given by equation (35).

6. Beyond identical distribution

So far, we have restricted our attention to the case of i.i.d. variables. We will now broaden
our point of view to the situation where the random variables are still independent, but
not necessarily identically distributed any more. Before we give proper definitions, let us
have another look at the lattice gas. Above, we compared the deterministic Dirac comb
ω = ∑x∈0 δx with the stochastic one,ωs =

∑
x∈0 η(x)δx , whereη(x) were i.i.d. random

variables of common meanm1. This led to theorem 1.
Alternatively, consider now the deterministic, but weighted distribution

ωa :=
∑
x∈0

m1δx. (37)

Clearly,ωa has an autocorrelation ifω itself does, and we get

γωa = (m1)
2 · γω (38)

and the result of theorem 1 may be restated as

γ̂ωs = γ̂ωa + d(m2− (m1)
2) (39)

which holds almost surely.
This indicates how we have to generalize our previous findings properly. Let3 again

be a uniformly discrete set of finite local complexity (i.e.1 = 3−3 discrete and closed),
and suppose that3 can be decoupled in the sense described above. Furthermore, let
(η(x))x∈3 be a family of independent random variables with non-negative meansm1(x)

which are bounded from above and with bounded variancesv(x), v(x) 6 c, say. Under
these assumptions, this family conforms to the strong law of large numbers. This can be
seen as follows. Let(ηm)m∈N be any sequence made from the random variablesη(x), e.g.
by numbering the points of3 in balls of growing radius. We then obtain

∞∑
m=1

v(ηm)

m2
6 c

∞∑
m=1

1

m2
= c · ζ(2) = cπ2

6
<∞. (40)

The assertion now follows from Kolmogorov’s criterion, see [8] or [36, theorem 12.3], and
we can continue to develop the appropriate analogue of theorem 1.

To this end, let us now compare the two distributions

ωa =
∑
x∈3

m1(x)δx (41)

which may be thought of as a toy model for an arrangement of different atoms (hence the
suffix a), and

ωs =
∑
x∈3

η(x)δx (42)

the former being deterministic and the latter probabilistic. We can now formulate the
appropriate theorem for this situation.
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Theorem 2.Let3 be a set of finite local complexity that can be decoupled, and let(η(x))x∈3
be a family of independent random variables with non-negative meansm1(x) (bounded from
above) and bounded variancesv(x) whose average is assumed to exist,

v = lim
r→∞

1

|3r |
∑
x∈3r

v(x). (43)

If ωa has a natural autocorrelation, in the sense we used this term above, thenωs also
possesses, almost surely, a natural autocorrelation, namely, withd = dens(3)

γωs = γωa + dvδ0 (44)

and its Fourier transform reads

γ̂ωs = γ̂ωa + dv. (45)

The proof is very similar to the one given above and need not be repeated.
This theorem is a little less explicit than the previous one, and one can see the potential

extra complication from the following simple example. Consider3 = Z and independent
random variablesη(m) with values in{0, 1} and parametrization

P({η(m) = 1}) =
{
p m even

q m odd
(46)

where 06 p, q 6 1. Here,ωa = q
∑

x∈Z δx + (p− q)
∑

x∈2Z δx which clearly has a unique
autocorrelationγωa , with Fourier transform

γ̂ωa =
(p + q)2

4

∑
y∈Z

δy + (p − q)
2

4

∑
y∈Z+ 1

2

δy. (47)

So, the diffraction spectrum depends on the values ofp andq, and the second term on the
right-hand side vanishes forp = q.

The corresponding stochastic version,ωs , reflects this and produces the same point
diffraction, plus a constant diffuse background (‘white noise’), i.e. by application of
theorem 2 we have, almost surely,

γ̂ωs = γ̂ωa + 1
2[p(1− p)+ q(1− q)]. (48)

The entropy density of this little example is immediate:

s = − 1
2[p log(p)+ (1− p) log(1− p)+ q log(q)+ (1− q) log(1− q)]. (49)

Note that, in general, a perfectly diffractive point set3 together with a family of
independent random variablesη(x) is not enough to apply theorem 2; we really have to
know that not onlyγω but alsoγωa exists. This is a rather subtle (and non-constructive)
set of conditions upon the means of the random variables. There is one situation where we
can escape this extra complication: if the random variables are distributed statistically, i.e.
in such a way that their meansm1(x) are themselves the result of a stationary Bernoulli
process, we are back to the situation of theorem 1, which may then be applied with

m1 = lim
r→∞

1

|3r |
∑
x∈3r

m1(x) (50)

provided this limit exists.
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7. Further examples: weighted model sets

Let us now return to the situation of a model set3 = 3(�), as described above. Assume
that we have a family of independent random variables parametrized by the pointsx∗ of
the window�. Suppose thatp(x∗) is a continuous function on�, with values in [0, 1].
Then,ωa =

∑
x∈3 p(x

∗)δx is perfectly diffractive (this follows from a slight modification
of the arguments given in [12] by means of an application of Weierstrass’ approximation
theorem). Explicitly, one has

γ̂ωa =
∑

k∈π1(D◦)

|a(k)|2δk (51)

whereD◦ is the dual lattice ofD and the amplitudes are given by [12]

a(k) = d

vol(�)

∫
�

e2π ik∗·x∗p(x∗) dµ(x∗) = d · p̂(−k∗)
vol(�)

(52)

whered denotes, as before, the density of the model set3.
Let us turn to the stochastic counterpart

ωs =
∑
x∈3

η(x)δx (53)

whereη(x) is the random variable that decides whetherx is occupied or not. Let us define
it as follows

P({η(x) = 1}) = p(x∗) P {η(x) = 0} = 1− p(x∗). (54)

Observe thatη(x) has meanp(x∗) and variancep(x∗)(1−p(x∗)), the latter being bounded
by 1

4. So, by Kolmogorov’s criterion, this family of random variables conforms to the
strong law of large numbers.

Let us see whether the mean of the variances exists. We note first that we have the
mean occupancy per point of3 as

p = lim
r→∞

1

|3r |
∑
x∈3r

p(x∗). (55)

Due to the fact that the projection into internal spaceH is uniform and the fact thatp is
continuous, it is possible to use Weyl’s theory of uniformly distributed sets [20] to show
that this limit indeed exists and is given by

p = 1

vol(�)

∫
�

p(y) dµ(y). (56)

In the same way, we can also calculate the averaged variance as

v = 1

vol(�)

∫
�

p(y)2 dµ(y)− p2. (57)

So, we can apply theorem 2 and obtain, with probability one,

γ̂ωs = γ̂ωa + dv. (58)

The resulting set also has a positive entropy density. Clearly, for a single point, this is

s(x) = −p(x∗) log(p(x∗))− (1− p(x∗)) log(1− p(x∗)) (59)

and we would be interested in the quantity

s := lim
r→∞

1

|3r |
∑
x∈3r

s(x) (60)
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provided this limit exists. Again, this follows from the uniform distribution of the points
of a model set and, using Weyl’s lemma, we obtain

s = − 1

vol(�)

∫
�

[p(y) log(p(y))+ (1− p(y)) log(1− p(y))] dµ(y). (61)

As a relevant example, let us consider a special functionp(x∗), namely one that reflects
the inflation structure of a given model set and is related to the recently investigated
invariant densities on them [2, 3]. Assume thatG = Rn × Rm and suppose that
3 = {x ∈ π1(D)|x∗ ∈ �}. We are interested here in the situation in which3 admits
self-similarities of the form

tQ,v : x 7→ Qx + v (62)

whereQ is an inflational linear map, i.e. a rotation followed by a scalar inflation. We call
such self-similaritiesQ-inflations. Remarkably, for fixedQ, the set

T := {v ∈ Rn|tQ,v3 ⊂ 3}
is itself a model set. In this situation, there is a unique absolutely continuous probability
measurep = pQ supported on� which is invariant under the set ofQ-inflations in the
sense that

p = lim
s→∞

1

|Ts |
∑
v∈Ts

t∗v · p (63)

wheret∗v is the induced mapping in internal space and(t∗v · p)(y) := p((t∗v )−1y).
The corresponding stochastic model set with site occupancy probabilityP({η(x) = 1}),

is likewise invariant in the sense that

P({η(x) = 1}) = lim
s→∞
|det(Q)|
Vs

∑
v∈Ts

∑
y∈t−1

Q,vx∩3
P ({η(y) = 1}). (64)

Such invariant densities in internal space are supported on the window and typically display
bell-shaped form. We refer the reader to [2–4] for more details on this and for various
examples.

Since this is a special case of the general situation met above, the measure

ωs :=
∑
x∈3

η(x)δx (65)

is (almost surely) diffractive with thesamepure point partωa, since

lim
r→∞

1

Vr

∑
x,x−z∈3r

η(x)η(x − z) = lim
r→∞

1

Vr

∑
x,x−z∈3r

p(x∗)p(x∗ − z∗). (66)

It is an interesting feature of this situation that the probability distributionspQk , as
k→∞, tend towards the constant distribution on�.

8. Concluding remarks

The analysis of diffraction from point sets with stochastic occupation of sites, or with
random scattering strength on the sites, can be developed in a rather general setting which
goes considerably beyond the lattice situation. It was the aim of this contribution to outline
some of the methods needed. For related aspects, we also recommend Hof’s treatment of
thermal fluctuations [13].
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One concrete reason to look into this type of problem stems from the discussion of
quasicrystalline order and the evidence of stochastic elements in it [15, 16]. Based upon
the random tiling scenario, one would expect the∗-image (lift) of a ‘real world’ point set
(e.g. one obtained from a tiling overlay of a high resolution electron micrograph) to show a
Gaussian shaped distribution or at least a bell-shaped curve with maybe a somewhat flatter
centre—in contrast to the uniform distribution obtained from a perfect model set.

Since such bell-shaped distributions have been observed and appear to be rather typical
[16], it is an important question as to what extent they really support the random tiling
picture. In other words: are there alternatives to explain such profiles? One is provided
by the stochastic occupation of a model set, if we start from an invariant density on the
window that resembles such a bell curve, see [2, 4] for the specific example of the Penrose
tiling and invariant densities attached to it. With a∗-image of a finite patch its stochastic
point set realization would reproduce the bell-shaped invariant density profiles.

We do not claim that this is enough to establish this simple stochastic approach as a real
alternative—there are various other objectives to be met, such as width of the profile as a
function of the patch size, structured diffuse scattering background (other than white noise),
or maximization of entropy as a function of suitable parameters for the non-crystallographic
phase. We believe, nevertheless, that there are interesting possibilities along the lines
presented here, and it would be nice to find (solvable) examples with extra correlations that
appear more realistic in the sense mentioned.

One first step in this direction is the calculation of the diffraction of a stochastic version
of Z with random variables that stem from a stationary ergodic Markov system, as is well
known in the literature [39]. This results in a pure point part which is that ofZ, reduced in
intensity, plus an absolutely continuous background that now shows a structure, i.e. that is
no longer white noise. We hope to report on proper generalizations of this scenario soon,
and also on an extension to the diffraction theory of random tilings.
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